
VSI Officials Committee Report 11 September 2008

- Officials component of Swimposium (4-5 October 2008)
 - This year we have national funding which allows us to bring in two national level officials. Carol Zaleski and Jamy Pfister will be the facilitators. Carol is a Past-President of USA-S, has been Meet Referee for three Olympic Games, and was the Meet Referee at the USA-S Olympic Trials and Deck Referee at the Olympic Games this past summer. Jamy is the Eastern Zones Officials Chair, a member of the USA-S Rules & Regulations Committee, and was a Chief Judge at the last three USA-S Olympic Trials.
 - The Saturday portion of the program will feature Carol and Jamy.
 - On Sunday AM we will have a Referee Clinic for training and experienced Referees (the focus will be on Referee related issues, but all officials are welcome).
 - Registration information has been distributed through our e-mail distribution list and has been posted on the VSI website.
- Officials training
 - Clinics have been scheduled in each of the districts. More to come.
- Officials numbers
 - Tom Colasurdo maintains a database of all our certified officials and trainees. Thanks to a lot of work on his part, and the input from District and Club Officials Chairs, we've got an accurate picture of where we are in terms of numbers. What follows is a snapshot of our numbers as of the end of long course season, 2008.
 - o Certified Officials: 407
 - o Trainees: 60
 - Retired in past year: 85 (this number is likely inflated as we've been trying to purge the database of officials who retired in earlier years)
 - Officials certified for less than one year: 30
 - o 50% have 3 years or less of experience
 - Numbers suggest that we may be losing officials faster than we are replacing them

Cumulative Individuals vs Years

0	Officials pe	[,] club (ra	ink by nun	nber of o	officials)
---	--------------	-----------------------	------------	-----------	------------

• 12 clubs with a total of 7% of all swimmers have no officials

District	Club	# Officials	Cumulative # Officials	Cumulative % Officials	# Swimmers	Cumulative # Swimmers	Cumulative % Swimmers
SW	GRTD	0	0	0.0	8	8	0.1
SE	NSD	0	0	0.0	9	17	0.3
N	WSC	0	0	0.0	9	26	0.5
SE	PRO	0	0	0.0	10	36	0.6
SW	HA	0	0	0.0	18	54	1.0
SW	ACST	0	0	0.0	24	78	1.4
С	RACE	0	0	0.0	36	114	2.0
N	TSU	0	0	0.0	47	161	2.9
С	DC	0	0	0.0	51	212	3.8
SW	FUAC	0	0	0.0	55	267	4.8
SW	STRM	0	0	0.0	55	322	5.7
SW	LU	0	0	0.0	81	403	7.2
SE	CYAT	1	1	0.2	2	405	7.2
SE	US	1	2	0.5	34	439	7.8
SW	CVA	2	4	1.0	25	464	8.3
SE	OBX	2	6	1.5	31	495	8.8
N	FAST	2	8	2.0	45	540	9.6
SW	CAST	2	10	2.5	56	596	10.6
N	STAT	2	12	2.9	121	717	12.8
SW	LASO	3	15	3.7	27	744	13.2
N	VAST	3	18	4.4	121	865	15.4
SW	SCAT	4	22	5.4	20	885	15.7
SE	PYAC	4	26	6.4	68	953	17.0
N	RPST	4	30	7.4	107	1060	18.9
N	SHKS	4	34	8.4	122	1182	21.0
N	WST	4	38	9.3	130	1312	23.3
N	VSTP	5	43	10.6	69	1381	24.6
N	PATS	6	49	12.0	6	1387	24.7
SW	CYAC	6	55	13.5	109	1496	26.6
SE	TCAC	6	61	15.0	137	1633	29.1
С	VACS	8	69	17.0	71	1704	30.3
SE	TAC	8	77	18.9	120	1824	32.5
С	SQST	8	85	20.9	142	1966	35.0
N	QDD	8	93	22.9	187	2153	38.3
SW	SMAC	9	102	25.1	52	2205	39.2
SE	SEVA	9	111	27.3	94	2299	40.9
N	PWSC	9	120	29.5	173	2472	44.0
С	BAC	9	129	31.7	189	2661	47.3
N	BASS	11	140	34.4	190	2851	50.7
N	RAYS	12	152	37.3	172	3023	53.8
SW	CCA	15	167	41.0	122	3145	56.0
SW	GATR	15	182	44.7	224	3369	59.9
SW	LY	16	198	48.6	109	3478	61.9
SE	WAC	17	215	52.8	204	3682	65.5
SW	HOKI	20	235	57.7	120	3802	67.7
SE	ODAC	25	260	63.9	231	4033	71.8
SE	CGBD	26	286	70.3	354	4387	78.1
SE	TIDE	27	313	76.9	250	4637	82.5
С	PSDN	32	345	84.8	239	4876	86.8
С	NOVA	39	384	94.3	675	5551	98.8
	UNAT	23	407	100.0	69	5620	100.0

٠	Some smal	l clubs provide	a large number	of officials	while some lar	rger clubs
	provide only	y a small numb	er of officials			

District	Club	#	#		District	Club	#	#
District	Club	# Swimmers	# Officials		District	Club		# Officials
05							Swimmers	
SE	CYAT	2	1		С	RACE	36	0
N	PATS	6	6		С	DC	51	0
SW	GRTD	8	0		С	VACS	71	8
SE	NSD	9	0		С	SQST	142	8
N	WSC	9	0		С	BAC	189	9
SE	PRO	10	0		С	PSDN	239	32
SW	HA	18	0		С	NOVA	675	39
SW	SCAT	20	4		Ν	PATS	6	6
SW	ACST	24	0		Ν	WSC	9	0
SW	CVA	25	2		N	FAST	45	2
SW	LASO	27	3		N	TSU	47	0
SE	OBX	31	2		Ν	VSTP	69	5
SE	US	34	1		N	RPST	107	4
C	RACE	36	0		N	STAT	121	2
N	FAST	45	2		N	VAST	121	3
N	TSU	47	0		N	SHKS	122	4
C	DC	51	0		N	WST	130	4
SW	SMAC	52	9		N	RAYS	172	12
SW	FUAC	55	0		N	PWSC	172	9
SW	STRM	55	0		N	QDD	187	8
					N			
SW	CAST	56	2			BASS	190	11
SE	PYAC	68	4		SE	CYAT	2	1
N	VSTP	69	5		SE	NSD	9	0
С	VACS	71	8		SE	PRO	10	0
SW	LU	81	0		SE	OBX	31	2
SE	SEVA	94	9		SE	US	34	1
N	RPST	107	4		SE	PYAC	68	4
SW	CYAC	109	6		SE	SEVA	94	9
SW	LY	109	16		SE	TAC	120	8
SE	TAC	120	8		SE	TCAC	137	6
SW	HOKI	120	20		SE	WAC	204	17
N	STAT	121	2		SE	ODAC	231	25
N	VAST	121	3		SE	TIDE	250	27
N	SHKS	122	4		SE	CGBD	354	26
SW	CCA	122	15		SW	GRTD	8	0
N	WST	130	4		SW	HA	18	0
SE	TCAC	137	6		SW	SCAT	20	4
С	SQST	142	8		SW	ACST	24	0
N	RAYS	172	12		SW	CVA	25	2
N	PWSC	173	9		SW	LASO	27	3
N	QDD	187	8		SW	SMAC	52	9
С	BAC	189	9		SW	FUAC	55	0
N	BASS	190	11		SW	STRM	55	0
SE	WAC	204	17		SW	CAST	56	2
SW	GATR	224	15		SW	LU	81	0
SE	ODAC	231	25		SW	CYAC	109	6
C	PSDN	231	32		SW	LY	109	16
SE	TIDE	250	27		SW	HOKI	120	20
SE	CGBD	354	26		SW	CCA	120	15
C	NOVA	675	20 39		SW	GATR	224	15
					300			
	UNAT	69	23	J		UNAT	69	23

- Overall, we have pool of officials that is sufficient to staff most of our meets at levels that we feel provides adequate coverage. We need to ensure that we are replacing our current officials at least the same rate at which we are losing them. If the number of sessions that we offer per year increases as the number of swimmers in the LSC increases, then staying even will not be sufficient for our future needs. We need to encourage all clubs to contribute to the pool of certified officials so that this important volunteer activity is shared by all.
- Championship meet issues
 - The VHSL AA High School Championships will be held 27-28 February 2009 which overlaps with the VSI Regional Championships. This will likely be an issue with respect to officiating in the SW District as many high schools in the district swim AA and many of the officials are dually certified. It may also be an issue in other districts. We need to be proactive in determining how this will affect staffing for our meets so that we can encourage additional volunteers if there is a need.
 - We have become increasingly dependent on officials without swimmers to act in key positions at Age Group Champs and Senior Champs. There is disagreement as to whether or not any official should be reimbursed for attending such meets. This is becoming a larger issue as gas prices go up, meets move out of state, and officials without children in the meet are asked to serve. *Action item: We need to determine if it is appropriate to cover lodging expenses of some officials at championship meets, and if so, establish appropriate guidelines.*